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Abstract. This paper is an explication of secret sharing schemes, emphasizing combinatorial construction methods. 
The main problem we consider is the construction of perfect secret sharing schemes, for specified access struc- 
tures, with the maximum possible information rate. 

In this paper, we present numerous direct constructions for secret sharing schemes, such as the Shamir threshold 
scheme, the Boolean circuit construction of Benaloh and Leichter (for general access structures), the vector space 
construction of BrickeU, and the Simmons geometric construction. We discuss the connections between ideal 
schemes (i.e., those with information rate equal to one) and matroids. We also mention the entropy bounds of 
Capocelli et al. Then we give a very general construciton, called the decomposition construction, and numerous 
applications of it. In particular, we study schemes for access structures based on graphs and the many interesting 
bounds that can be proved; and we determine the exact value of the optimal information rate for all access struc- 
tures on at most four participants. 

1. Introduction: The Shamir Threshold Scheme 

In a bank, there is a vault which must be opened every day. The bank employs three senior 
tellers; but it is not desirable to entrust the combination to any one person. Hence, we 
want to design a system whereby any two of the three senior tellers can gain access to the 
vault, but no individual can do so. This problem can be solved by means of  a secret shar- 
ing scheme (also called a shared control scheme). 

We first study a special type of  secret sharing scheme called a threshold scheme. Let 
t, w be positive integers, t <_ w. Informally, a (t, w)-threshold scheme is a method of sharing 
a secret key K among a finite set 3 9 of  w participants, in such a way that any t participants 
can compute the value of  K, but no group of  T - 1 participants can do so. The value of  
K is chosen by a special participant called the dealer. The dealer is denoted by D and we 
assume D ~ fig. When D wants to share the key K among the participants in yg, he gives 
each participant some partial information called a share. The shares should be distributed 
secretly, so no participant knows the share given to another participant. 

At a later time, a subset of  participants B c ~-9 will pool their shares in an attempt to 
compute the secret key K. I f  IBI -> t, then they should be able to compute the value of 
K as a function o f  the shares they collectively hold; if IBI < t, then they should not be 
able to compute K. In the example described above, we desire a (2, 3)-threshold scheme. 
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We will use the following notation. Let ~-9 = {Pi : 1 <_ i <_ w} be the set of w partici- 
pants, f i t"is key set (i.e.,  the set of  all possible keys); and d is the share set (i.e., the 
set of all possible shares). 

The problem of constructing threshold schemes was solved independently by Shamir 
[21] and Blakley [5] in 1979. Blakley's solution uses finite geometries, while Shamir's scheme 
is based on polynomial  interpolation. We present  the Shamir  threshold scheme here. Let 
fir" = GF(q) ,  where q _ w + 1 is a pr ime power. Also, let d = GF(q) .  Hence, the 
key will be an element of  GF(q) ,  as will be each share given to a participant.  

In the initialization phase, D chooses w distinct, nonzero elements of  GF(q) ,  denoted 
x i, 1 <_ i <_ w (note that this is where we require q _> w + 1). For  1 _ i _ w, D gives 
the value xi to Pi. The  values xi are not  the shares; in fact they can be made public. 

Now when D actually wants to share a secret K E . ~ ,  he performs the following steps: 

1. D secretly chooses (independently at random) t - 1 elements of  GF(q) ,  a 1 . . . . .  at_ 1. 

2. For  1 _< i _< w, D computes Yi = a(x i ) ,  where 

t - I  

a(x) = K + Z aJ xj" 
j = l  

3. For 1 _< i _ w, D gives the share Yi to  Pi.  

Let 's  look at how a subset B of  t participants will  reconstruct the secret. Suppose partici- 
pants P i ,  �9 � 9  Pi  want to determine K. They know that Yi = a(xi  ) ,  1 _< j _< t, where 

l t . . J ~/ 

a(x) is the (secret) polynomial  chosen by D. Since a(x) has degree at most  t - 1, a(x) 
can be written as 

a(x) = a o + a lx  + . . .  + at_l  x t - l ,  

where the coefficients ao . . . . .  at-1 are unknown and ao = K is the key. Since yi~ = a(xij), 
1 - j _< t, B can obtain t l inear equations in the t unknowns a0, �9 � 9  at-1. Remember 
that all ari thmetic is done in GF(q) .  I f  the equations are linearly independent,  there will 
be a unique solution, and ao will be revealed as the secret. 

Let 's  look at a small example. Suppose q = 17, t = 3 and w = 5; and the public x- 
coordinates are xi = i, 1 _< i _< 5. Suppose that B = {PI, P3,  P5} pool their shares, which 
are respectively 8, 10 and 11. Since a(x) = ao + a lx  + a2 x2,  the following three linear 
equations are obtained: 

a 0 + a 1 + a 2 = 8 

a0 + 3al  + 9a2 = 10 

a0 + 5al  + 8 a  2 = 11. 

This system does have a unique solution in Z l 7 :  a 0 = 13, a l  = 10 and a 2 = 2. The secret 
is therefore K = a0 = 13. 
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Clearly, it is important  that the system of t l inear equations have a unique solution, as 
in the above example. We show now that this is always the ease. In general,  we have yii = 
a(xi ), 1 <_ j <_ t, where a(x) = ao + aix  + . . .  + at_ix  t-I  and a0 = K. The system 
obtained is the following: 

ao + a l x i ,  + a2x~i~ + . . .  + a t - l x~  -2 = Yi, 
a x t -1  

at) + alxi2  + a2x~i, + + t -1  is = Yi2 

a X t-1 a 0 -at- a l x i t  + a2x~i t -k- . . .  -t- t - 1  i t = Yi t. 

This can be written in matr ix  form as follows: 

I 
1 xi, 
1 xi2 ~i~ 

l X i t  

x l  
x"- , I ao 

,2 I a l  Yi2 

x ' t -1  at  1 ~_Yit_.) �9 . . 1 t . . . I  

Now, the coefficient matrix A is a so-called Vandermonde matrix,  and its determinant is 

det A = 1 - I  (xi~ - -  X i k ) .  
1 <_k<j<_t 

T h e  xi's are all distinct, so no term x i  - xi. is equal to zero. The product  is computed 
�9 �9 J g . �9 

m the field GF(q) .  Since the product  of nonzero terms in a field is always nonzero, we 
have that det A ~ 0. Since the determinant  of the coefficient matr ix is nonzero, the system 
has a unique solution over the field GF(q) .  

What  happens i f  a group of  t - 1 participants attempt to compute K?  Proceeding as 
above, they will obtain a system of  t - 1 equations in t unknowns. Suppose they guess 
a value Y0 for the secret. Since the secret is a 0 = a(0),  this will yield a t th equation, and 
the coefficient matr ix of  the resulting system of t equations in t unknowns will  again be 
a Vandermonde matrix. As before, there will be a unique solution. Hence, for every hypothe- 
sized value y of  the secret, there is a unique polynomial  ayo(X ) such that Yij = ayo(Xij) for 
1 _ j _ t - 1 and such that y = ayo(O). Hence, no value of  the secret can be ruled out, 
and t - 1 participants can obtain no information about the secret. 

We have analyzed the Shamir  scheme from the point of  view of solving systems of  linear 
equations over GF(q) .  There is an alternative method, based on the Lagrange interpolation 
formula for polynomials.  The Lagrange interpolation formula is an explicit  formula for 
the (unique) polynomial  a(x) of degree at most t that we computed above. The formula 
is as follows: 
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t 

a ( x ) : j ~ l Y i  j 1"I ~ - x i h  
"= l < k < t , k # j  fj - -  Xih 

Now, the t participants in B do not need to know the whole polynomial  a(x). They only 
need to know the constant term K = a(0). Hence, they can compute the following expression: 

t 

K = ~_~ Yij 1"I Xih 
j = l  l<k<_t ,k#j  Xih --  Xij 

If  we define 

b j  ~ H Xih 

l < k < t , k # j  Xih --  Xi.i 

for 1 _< j _< t, then we have 

t 

K : Z  bjyif 
j = l  

Hence, the secret is a l inear combination of the t shares. Note also that the values by can 
be precomputed,  i f  desired. 

In the example above, the participants { P 1 , / 3 ,  Ps} could precompute bl = 4, b2 = 3 
and b 3 = 11. Then given shares 8, 10 and 11, they would obtain 

K = 4 x 8 + 3 x 10 + 11 x 11 - 13 mod 17, 

as before. 

1.1. A (t, O-Threshold Scheme 

The last topic of this section is a simplified construction for threshold schemes in the special 
case w = t, due to Karnin, Greene and Hellman [15]. This construction will work for any 
key set fir" = Zm with r3 = Zm. (It is not required that m be prime, and it is not neces- 
sary that m _ w + 1.) I f D  wants to share the secret K E Zm, he performs the following 
operations: 

1. D secretly chooses (independently at random) t - 1 elements of Zm, Yl, - - -, Yt-1. 
2. D computes Yt = K - ~ ~-~ Yi mod m .  

3. For  1 ~ i - t, D gives the share Yi to Pi. 

Observe that the t participants can compute K by the formula 

t 

K = ~ y i m o d m ,  
i=l  
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Can t - 1 participants compute K? Clearly, the first t - 1 participants cannot, since they 
receive t - 1 independent random numbers as their shares. Consider the t - 1 participants 
in the set f f g \ { P i } ,  where 1 _ i ___ t - 1. These t - 1 participants possess the shares 
Yl . . . . .  Yi-1, Yi+I, �9 �9  Yt-1 and K - F,~-~ Yi. By summing their shares, they can compute 
K - Yi. However, they do not know the random value Yi, and hence they have no informa- 
tion as to the value of K. Consequently, we have a (t, t)-threshold scheme. 

2. Access Structures and General Secret Sharing 

In the previous section, we desired that any t of  the w participants should be able to deter- 
mine the secret. A more general situation is to specify exactly which subsets of participants 
should be able to determine the secret and which should not. Let I '  be a set of subsets 
of  ~-9; this is denoted mathematically by the notation I '  c 2 Y. The subsets in r are those 
subsets of  participants that should be able to compute the secret, r is called an access 
structure and the subsets in r are called authorized subsets. 

Let ffCbe the key set and let ~ be the share set. As before, when a dealer D wants to 
share a secret K E ~ he will give each participant a share from d .  At a later time a 
subset of  participants will attempt to determine K from the shares they collectively hold. 
We will say that a scheme is aper fec t  secret  sharing scheme realizing the access structure 
r provided the following two properties are satisfied: 

1. I f  an authorized subset of  participants B c ffgpool their shares, then they can determine 
the value of  K. 

2. If  an unauthorized subset of  participants B c ~ p o o l  their shares, then they can deter- 
mine nothing about the value of K. 

The security of  such a scheme is unconditional, since we do not place any limit on the 
amount of  computation that can be performed by a subset of participants. Of  course, in 
the case where B is an authorized subset, we will try to minimize the amount of  computa- 
tion time required to determine the secret. 

Observe that a (t, w)-threshold scheme realizes the access structure 

{r c ~ :  I r l  _ t}. 

Such an access structure is called a threshold access structure. We showed in the previous 
section that the Shamir scheme is a perfect scheme realizing the threshold access structure. 

Suppose that B E r and B c C _ ~'~. Suppose the subset C wants to determine K. 
Since B is an authorized subset, it can already determine K. Hence, the subset C can deter- 
mine K by ignoring the shares of  the participants in C\B.  Stated another way, a superset 
of  an authorized set is again an authorized set. What this says is that the access structure 
should satisfy the monotone property: 

if B E  r a n d B  c_ C c_ ~-9 t h e n C ~  I' .  
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I f F  is an access structure, then B E F is a min ima l  authorized subset ofA ~ F whenever 
A c B, A ~ B. The set of minimal authorized subsets of F is denoted F 0 and is called 
the basis of F. Since F consists of all subsets of 29 that are supersets of  a subset in the 
basis F0, F is determined uniquely as a function of F 0. Expressed mathematically, we have 

F = { C c _  2 9 : B  ~_ C , B ~  Fo}. 

We say that F is the closure of Fo and write F = cl(Fo). 
As an example, suppose 29 = {P1, P2, P3, P4} and 

Then 

ro = {{P. P2, P4}, {P~, e3, P,}, {P2, P3}}. 

V = {{P1, P2, P4}, {P1, P3, P4}, {P2, P3}, {P1, P2, P3}, {P2, P3, P4}, 

{P1, P2, P3, P4}}" 

In the case of a threshold access structure, the basis consists of all subsets of (exactly) 
t participants. 

2.L The Monotone  Circuit Construction 

In 1987, Ito, Saito and Nishizeki [13] gave a construction which shows that there exists a 
perfect secret sharing scheme realizing any monotone access structure. In the remainder 
of this section, we will give a conceptually simple and elegant proof of this result, due 
to Benaloh and Leichter [2]. The idea is to first build a monotone circuit that recognizes 
the access structure, and then to build the secret sharing scheme from the description of 
the circuit. We call this the monotone  circuit construct ion.  

Suppose we have a Boolean circuit, with w Boolean inputs, xl . . . . .  Xw (corresponding 
to the w participants in 2 9 = {P1 . . . . .  Pw}) ,  and one Boolean output, y. The circuit con- 
sists of or  gates and and  gates; we do not allow any not  gates. Such a circuit is called 
a monotone circuit. The reason for this nomenclature is that changing any input xi from 
"0"  (false) to " 1 "  (true) can never result in the output y changing from " 1 "  to "0." The 
circuit is permitted to have arbitrary fan-in, but we require fan-out equal to 1 (that is, a 
gate can arbitrarily many input wires, but only one output wire). 

I f  we specify Boolean values for the w inputs of such a monotone circuit, we can define 

B(x~ . . . . .  Xw) = {e~ : x~ = 1 } ,  

i.e., the subset of 29 corresponding to the true inputs. Suppose G is a monotone circuit, 
and define 

r 'a  = {B(xl  . . . . .  Xw) : G(x l  . . . . .  Xw) = 1}, 
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where G(x l ,  � 9  Xw) denotes the output of G given inputs Xl, �9 �9 Xw. Since the circuit 
G is monotone, it follows that I ' c  is a monotone set of subsets of ~'~. 

It is easy to see that there is a one-to-one correspondence between monotone circuits 
of this type and Boolean formulae which contain the operators A and V, but do not contain 
any negations. 

I f  P is a set of subsets of fig, then it is easy to construct a monotone circuit G such that 
I '  a = I'. One way to do this is as follows. Let I '  0 be the basis of I ' .  Then construct the 
disjunctive normal form Boolean formula 

BEFo xiEB 

In the example above, where Po = {{P1, P2, P4}, {PI, P3, P4}, {P2, P3}}, we would 
obtain the Boolean formula 

(PI AP2 AP4) V (PI AP3 AP4) V (P2 AP3)- (1) 

Each clause in the Boolean formula corresponds to an "and" gate of the associated mono- 
tone circuit; the final disjunction corresponds to an "or" gate. The number of gates in 
the circuit is [ I'0[ + 1. 

Suppose G is any monotone circuit that recognizes I" (note that G need not be the circuit 
described above). We describe an algorithm which enables D to construct a perfect secret 
sharing scheme that realizes I'. This scheme will use as a building block the (t, t)-schemes 
constructed at the end of the last section. Hence, we take the key set to be .7(" = Zm for 
some integer m. 

The algorithm proceeds by assigning a va luef (B0 E .TCto every wire Win the circuit 
G. Initially, the output wire Wo, a of the circuit is assigned the value K, the secret. The 
algorithm iterates a number of times, until every wire has a value assigned to it. Finally, 
each participant Pi is given the list of values f (W)  such that W is an input wire of the cir- 
cuit which receives input xi. 

The basic iterative step of the algorithm involves finding a gate G of G such thatf(Wa) 
is defined if W G is the output wire of G bu t f (W)  is not defined for any of the input wires 
of G. We then define f (W)  for the input wires of G as follows: 

1. I f  G is an or  gate, then define f (W)  = f ( W a )  for every input wire W of G. 
2. If  G is an and gate having input wires W1, �9 � 9  Wt, then share the s e c r e t f ( W G )  among 

the t input wires using the (t, t)-scheme. That is, choose (independently at random) 
t - 1 elements of Zra, Yl ,  " . . ,  Yt-l. Then compute Yt = f ( W c )  - ~ - ~  Yi mod m and 
for 1 _< i _< t, def'mef(W/) = Yi. 

Let's carry out this procedure for the circuit corresponding to the Boolean formula (1). 
Suppose K is the secret. The value K is given to each of the three input wires of the final or 

gate. Next, we consider the and gate corresponding to the clause P1 A P2 A P4- The three 
input wires are assigned values al ,  a2, K - al - a2, respectively, where all arithmetic 



364 D.R. STINSON 

is done in Zm. In a similar way, the three input wires corresponding to P1 A P3 A P4 are 
assigned values bl, b2, K - bl - b2. Finally, the two input wires corresponding to/ '2  A P3 
are assigned values Cl, K - Cl. Note that al, a2, bl, b2 and Cl are all random values in Zm- 

The shares that the four participants receive are the following: 

PI ~-- (al, bl); 

/192 ~'- (a2, Cl); 

P3 ~-- (b2, K - -  Cl);  

P4 *- ( g  - a 1 -- a2, K - b 1 - b2). 

Let's first verify that each basis subset can compute K. {P1, P2, P4} can compute 
K = al + a2 + (K - al - a2). {PI, P3, / '4}  can compute K = bl + b2 + (K - bl 

- b2). Finally, {P2, P3} can compute K = cl + (K - cl). 
Can an unauthorized subset compute K?  It suffices to consider the maximal unauthorized 

subsets, namely: {Pl, P2}, {Pl, P3}, {P1, P4}, {/2, P4} and {/3, P4}. In each case, it 
is easy to see that K cannot be computed, either because some necessary piece of  random 
information is missing, or because all the shares possessed by the subset are random. For 
example, the subset {P1, /2}  possesses only the random values al,  bl, a2, cl. The subset 
{ P 3 ,  P 4 }  possesses the shares b2, K - cl, K - al - a2, K - b I - b 2. Since the values 
of  Cl, al,  a2 and bl are unknown random values, K cannot be computed. 

We can obtain a different scheme realizing the same access structure by rewriting the 
formula (1) in conjunctive normal form (note that this corresponds to the original construction 
of  Ito, Saito and Nishizeki [13]): 

(PI V P2) A (PI V P3) A (P2 V P3) A (P2 V P4) A (P3 V P4)- (2) 

If  we implement the scheme using the circuit corresponding to (2), then the following shares 
are distributed: 

PI *'- (al, a2); 

P2 4"- (al, a3, a4); 

P3 ~- (a2, a3, K - a 1 - -  a 2  - -  a3 - a 4 ) ;  

P 4  *"  (a4 ,  K - a 1 - a 2 - a 3 - a4). 

We leave the details for the reader to check. 
How do we prove that the monotone circuit construction works in general? It seems most 

appropriate to proceed by induction on the number of  gates in the circuit G. If  G contains 
only one gate, then the result is fairly trivial. I f  G consists o f  one or gate, then every par- 
ticipant will be given the secret. This scheme realizes the access structure consisting of  
all nonempty subsets of  participants. I f  G consists of  a single and gate with t inputs, then 
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the scheme is the (t, 0-threshold scheme that we analyzed earlier, which realizes the 
threshold access structure. 

Now, as an induction assumption, suppose that there is an integerj > 1 such that, for all 
circuits G with fewer than j gates, the construction produces a scheme that realizes I" D. 
Let G be a circuit on j gates. Consider the /as t  gate, G, in the circuit; again, G could be 
either an or gate or an and gate. Let's first consider the case where G is an or gate. Denote 
the input wires to G by W,., 1 _< i __< t. These t input wires are the ouptuts of t subcircuits 
of G, which we denote Ci, 1 <_ i <_ t. Corresponding to each Gi, we have a (sub)scheme 
that realizes the access structure I 'cl , by induction. Now, it is easy to see that 

t 

FG = U r c c  
i=1 

Since every W/is assigned the secret K, it follows that the scheme realizes I" a, as desired. 
The analysis is similar if G is an and gate. In this situation, we have 

t 

r a  = N ra,. 
/=1 

Since the secret K is shared among the t wires W/using an (t, 0-threshold scheme, it fol- 
lows again that the scheme realizes r D. This completes the proof. 

Of  course, when an authorized subset, B, wants to compute the secret, the participants 
in B need to know the circuit used by D to distribute shares, and which shares correspond 
to which wires of the circuit. All this information will be public knowledge. Only the actual 
values of the shares are secret. The algorithm for reconstructing the secret involves com- 
bining shares according to the circuit, with the stipulation that an and gate corresponds 
to summing the values on the input wires modm (provided these values are all known), 
and an or gate involves choosing the value on any input wire (with the understanding that 
all these values will be identical). 

3. A General Model for Secret Sharing Schemes 

In this section, we will develop a general mathematical model for secret sharing and discuss 
the concept of security in this model. The model is similar to that of [9]. In this model, 
we represent a secret sharing scheme by a set .7 of distribution rules. A distribution rule 
is a function 

f :  if9 U {D} ~ ..TCU r3 

which satisfies the condit ionsf(D) E .7C, a n d f ( P i )  ~ r3 for 1 _ i __ w. A distribution 
rule f represents a possible distribution of shares to the participants, where f ( D )  is the 
secret key being shared, a n d f ( P i )  is the share given to Pi. 
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I f  o q is a set of  distribution rules and K E .7C, denote 

.~f = {f E ~ : f(D) = K}. 

I f  K E .7('is the value of the secret that D wishes to share, then D will choose a random 
distribution rule f E .TK, and use it to distribute shares. 

Observe that this is a completely general model in which we can study secret sharing 
schemes. Any of our existing schemes can be described in this setting by determining the 
possible distribution rules which the scheme will use. The fact that this model is mathe- 
matically precise makes it easier to give definitions and to present proofs. We also empha- 
size that the set of distribution rules are public knowledge. 

We will sometimes find it convenient to tabulate all the values of the distribution rules 
in the form of an array. Each row of  the array corresponds to a distribution rule f E .7, 
where we place the value f(x) in colunm x of the array, for all x E ~-9 LI {D }. 

As an example, in Figure 1 we present a secret sharing scheme from [9] for the access 
structure having basis 

C6 : {{P1, P2}, {P2, P3}, {P3, P4}, {P4, Ps}, {P5, P6}, {P6, PI}}. 

C6 is the graph which is a cycle of length six. 
So, this scheme has w = 6, .7C-= {0, 1} and r3 = {0, 1, 2}. There are 12 distribution 

rules, six corresponding to each of the two values of the secret, K. A subset of  participants, 
B, will attempt to determine the secret by examining the set of distribution rules, and deter- 
mining which rules are consistent with the shares they collectively hold. 

mMlWl llcll lza  
mlml  HH [] 

jl lraljl l inumlillmlU 
 ll]llaanmlllllmm 
r 
rmltmlEItmtmnmlillW 
 llillBItmimtmtml  
 lllmllnumlmlilEillI 
 ltl]lUlmlmlmlmaa 
nltmilWEIEItmlllE 
~ l l n l l K l l n g n l l i l l l ~  

Figure 1. A secret sharing scheme for Ca. 
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First, note that the shares given to any two participants in the basis C6 do not determine 
a unique distribution rule, but they do determine K. For example, if P1, P2 receive the 
shares 1, 1, respectively, then they know only that the distribution function is either3~ or 
3~. However, the value of K is determined to be 1, since fa(D) = 3~(D) = 1. 

Next, let us consider a share given to one participant, say P1. Knowledge of one share 
restricts the possible distribution rules to four out of 12. However, two of these four rules 
correspond to the secret being 0 and the other two correspond to the secret being 1. 

If  {Pi, Pj } is an unauthorized subset, then the number of possible distribution rules con- 
sistent with the shares they hold is reduced from 12 to two, but the two possible rules always 
correspond to different values of the secret. {P1, P3, Ps} and {/'2, P4,/ '6} are also un- 
authorized subsets. I f  the participants in either of  these subsets pool their shares, they can 
(again) restrict the number of possible distribution rules to two of the 12. but the two possible 
rules correspond to different values of the secret. 

3.1. Formal Definitions 

It is useful to develop conditions which ensure that a set of distribution rules for a scheme 
does indeed realize a specified access structure. These conditions appear rather complicated, 
but they are motivated by the analysis of the scheme presented in Figure 1. The conditions 
are equivalent to conditions presented in [9]. 

Suppose F is an access structure and .Tis a set of distribution rules. Suppose the follow- 
ing two properties are satisified: 

(*) Let B E F, and suppose f, g E .7. I f f (Pi )  = g(Pi) for all Pi E B, thenf (D)  = g(D). 
(**) Let B ~ I" and suppose f :  B ---, c3. Then there exists a nonnegative integer )~(f, B) 

such that, for every K E -~,  

l{g E .TK: g(Pi) =f(Pi)VPi E B}I = h(f, B). 

Then we claim that .Tis a perfect secret sharing scheme that realizes the access structure 
F. The property (*) is relatively straightforward: it says that the shares given to an authorized 
subset uniquely determine the value of the secret. (As in Figure 1, these shares need not 
determine the distribution rule being used.) 

The property (**) will enable us to prove mathematically that the shares given to an 
unauthorized subset give no information as to the value of the secret. The list of shares 
( f (Pi)  : Pi E B) given to an unauthorized subset B will restrict the possible distribution 
rules to some subset of .7. However, the remaining possible rules will be equally divided 
among the possible keys. More precisely, for any assignment of shares f to B, there will 
remain h(f, B) possible rules corresponding to each value of the secret. 

As an illustration of these conditions, we compute the values X(f, B) for the scheme 
in Figure 1. I f B  = {Pi} andf(Pi)  = j ,  where 1 _< i _< 6 and 0 _ j _< 2, then h(f, B) 
= 2. I f  B is an unauthorized subset of cardinality two andf i s  a one-to-one function, then 
)~(f, B) = 1. Similarly, i fB  = {P1, P3, PS} or {P2, P4, P6} a n d f i s  a one-to-one func- 
tion, then )~(f, B) = 1. In all other cases where B is an unauthorized subset, X(f, B) = 0. 
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The formal security proof uses probability distributions. We suppose that there is a prob- 
ability distribution P~Tc on .7C. For every K ~ .7C, D will choose each distribution rule in 
.Tr with equal probability 1/I .TK]. When an unauthorized subset B pools their shares, they 
can compute a conditional probability distribution p ~ ( K l f ) ,  where f :  B ~ r represents 
the shares they collectively hold. What we will do is to prove that p ~ ( K I f )  = p x ( K )  
for every K E fit'-and for e v e r y f  : B ~ d ,  i f B  is an unauthorized subset. That is, the 
conditional probability distribution on .7C, given an assignment of sharesfto an unauthor- 
ized subset B, is the same as the a priori probability distribution on .7C. The reader will 
notice that this situation is very similar to the concept of perfect secrecy, and this similarity 
is why the resulting scheme is termed perfect. 

The computation of the conditional probability distribution p:~(KIf)  is much like other 
computations we have performed; the main tool is Bayes' theorem. In applying Bayes' 
theorem, we need to compute the probability distribution on the shares given to the par- 
ticipants in B. We denote the set of all possible distributions of shares to the participants 
in B by d(B);  the probability distribution on rS(B) is denoted by P~s(B). 

We want to prove that p~c(KIf)  = p~c(K). By Bayes' theorem, 

p.Tc(KI f) = P'Tt"(K)P afB)(f IK) 
Pd(B)(f) 

Hence, it suffices to prove that 

pa (n ) ( f lK)  = pe(B)(f) .  

First, we observe that there is a constant h such that [ ffK ] = ~ for every K E .7C. This 
can be seen easily from property (**) with B = 0. Consequently, we have 

p ~ s ( B ) e : l K  ~ _ X ( f , b )  

for every f, B and K. We compute P,s(B)(f) as follows: 

P ~(B)(f) = ~ P_Tc(k)P~s(B)(f l k) 
k E .TC 

Mr, B )  = ~ p ~ k )  
3, 

kE..TC 

_ 3,(f, b)  

= p,s(B)ffl K), 

as desired. 
We summarize this result in the following theorem. 
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T r m o ~ M  3.1 [9] Suppose we have a collection of  distribution rules .T that satisfy the con- 
ditions (*) and (**). Then .7 is a perfect secret sharing scheme realizing the access struc- 
ture r.  

4. Information Rate and Ideal Schemes 

The results of  Section 2 prove that any monotone access structure can be realized by a 
perfect secret sharing scheme. We now want to consider the efficiency of the resulting 
schemes. In the case of  a (t, w)-threshold scheme, we can construct a circuit corresponding 
to the disjunctive normal form Boolean formula which will have 

1 + ~ t ~  

gates. Each participant will receive 

w - -  1 ]  
t - -  1 

elements of Z m a s  his or  her share. This seems very inefficient, since a Shamir (t, w)- 
threshold scheme enables a secret to be shared by giving each participant only one piece 
of  information. 

In general, we measure the efficiency of a secret sharing scheme by the information rate. 
We use the model of  Section 3. Suppose .Tis a set of  distribution rules for a secret sharing 
scheme. For 1 _ i _< w, define 

c~i -----  {f(Pi)  : f E .7}.  

di  represents the set of  possible shares that Pi might receive; of  course di  c d .  Now, 
since the secret key K comes from a finite set .7C, we can think of  K as being represented 
by a bit-string of length log2 I .7C1, by using a binary encoding, for example. In a similar 
way, a share given to Pi can be represented by a bit-string of  length log2 I d i l .  Intuitively, 
Pi receives log2 1 di l  bits of information (in his or  her share), but the information content 
of  the secret is log2 I -7('1 bits. The information rate [9] for Pi is the ratio 

log2 I-~l 
Pi - -  

log  I " 

The information rate of  the scheme is denoted by p and is defined as 

p = min{pi  : 1 _< i _< w}. 

This definition of information rate is reminiscent of the information rate of an error-correcting 
code. (We should mention that an alternative definition of information rate has also been 
studied in the literature; see [6], [17], [16], [14].) 



370 D.R. STINSON 

Let's look at the two schemes from Section 2. The scheme produced using the Boolean 
formula (1) has p = log2 m/log2 m 2 = 1/2. Using the formula (2), we get p = 1/3. Hence, 
the first implementation is preferable. 

In general, if we construct a scheme from a circuit C using the monotone circuit con- 
struction, the information rate Pi = 1/ri, where ri denotes the number o f  input wires to 
G carrying the input xi. Equivalently, r i denotes the number of  occurrences of  xi in the 
related Boolean formula. 

The scheme presented in Figure 1 has p = log2 2/1og2 3 ~- 0.63. With respect to thresh- 
old access structures, we observe that the Shamir scheme will have information rate 1 (the 
optimal value). In contrast, an implementation of  a (t, w)-threshold scheme using a dis- 
junctive normal form Boolean circuit will have information rate 

1 / ~ t - 1  ~ , 

which is much lower if 1 < t < w. 
Obviously, a high information rate is desirable. The first result we prove is that p _ 1 

in any scheme. Suppose .Tis the set of  distribution rules for a perfect secret sharing scheme 
that realizes the access structure F. Let B E r0  and let Pi E B. Define B '  = B \ { P i } ,  and 
choose any distribution rule g E .7. Let f be the restriction of  g to B'. Now, B '  r r ,  so 
there is an integer X( f  B ' )  > 0 satisfying property (**). Hence, for each K E .~ ,  there 
is a distribution rule fK E .TK such thatfK(Pj) = f ( P j )  for all P1 E B'. By property (*), 
fK(Pi) ;~ fK,(Pi) if g # K'. Hence, I - ] and thus p _< 1. 

Since p = 1 is the optimal situation, we refer to such a scheme as an ideal scheme. The 
Shamir schemes are ideal schemes. In the next subsection, we present a construction for ideal 
schemes that generalizes the Shamir schemes. We call this the vector space construction. 

4.1. The Vector Space Construction 

The vector space construction is due to Brickell [7]. Suppose r is an access structure, 
and let GF(q)a denote the vector space of  all d-tuples over GF(q),  where q is a prime 
power and d _ 2. Suppose there exists a function 

4~ : ~ '~U {D} ~ GF(q) a 

which satisfies the property 

(***) ~b(D) E (dP(e i )  : Pi E B)  ~* B E F. 

That is, the vector ~b(D) can be expressed as a linear combination of  the vectors in the 
set {~b(Pi) : Pi E B} if and only if B is an authorized subset. 

Now, suppose there is a function ~b that satisfies (***). We construct an ideal secret shar- 
ing scheme with .7(" = r = GF( q), 1 <_ i <- w. The distribution rules of  the scheme 
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are as follows: for every vector ~ = (al . . . . .  ad) E GF(q)a, define a distribution rule 
where 

A ( x )  = a �9 ~,(x) 

for every x E ~'J t.J {D }, where the operation " . "  is the inner product in GF(q). 
We have the following result. 

"IMEoREM 4.1. [7] Suppose tk satisfies the conditon (***). Then the collection o f  distribu- 
tion rules 

~7 = {fa : a  E GF(q) d} 

is an ideal scheme that realizes r .  

Proof. First, we will show that if B is an authorized subset, then the participants in B can 
compute K. Since r  E ((~(Pi) : Pi EB>, we can write 

r = ~ ci~P(Pi) , 
{i:PiEB} 

where each ci E GF(q). Denote by si the share given to Pi. Then si = a �9 ~P(Pi), where 
is an unknown vector chosen by D. Now, K = ~ �9 ~b(D). By the linearity of  the inner 

product operation, K = r~{/:p,~B} cia "dP(Pi). Thus, it is a simple matter for the participants 
in B to compute 

K = ~ CiS i. 
{i:PiEB } 

Hence, property (*) is satisfied. 
What happens if B is not an authorized subset? Denote by e the dimension of  the subspace 

(~b(Pi) : Pi E B). Choose any K E Y~, and consider the system of equations: 

qb(Pi) �9 (l = si, VP i E B 

4 , ( D )  �9 a = K .  

This is a system of linear equations in the d unknowns al ,  �9 �9  ad. The coefficient matrix 
has rank e + 1, since dp(D) f~ (~(Pi)  : Pi E B) .  Hence, the solution space has dimension 
d - e - 1 (independent of  the value of  K). Thus, k(f,  B) = pal-e-l, w h e r e f ( P i )  = si, 
for Pi E B. Hence, property (**) is also satisfied. By Theorem 3.1, we have a perfect secret 
sharing scheme realizing the access structure r .  [ ]  
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4. 2. Some Applications 

First, we observe that the Shamir (t, w)-threshold scheme is a special case of  the vector 
space construction. To see this, define d = t and let 

ch(Pi) = (1, xi, x2i . . . . .  X: -1) 

for 1 _< i _< w, where x i is the x-coordinate given to Pi. Also, let 

~b(D) -- (1, 0 . . . . .  0). 

The resulting scheme is equivalent to the Shamir scheme; we leave the details to the reader 
to check. 

Another general result involves access structures that have as a basis the edges of certain 
undirected graphs. Given a graph G = (V, E) with a vertex set Vand edge set E, we denote 
by I ' (G) the access structure on participant set V having basis I '  0 = E. A graph G is de- 
fined to be a complete multipanite graph if the vertex set V can be partitioned into subsets 
1/1 . . . . .  V e such that {x, y} E E if and only if x E V/, y E Vj, where i # j .  The sets V/ 
are called pans.  The complete multipartite graph is denoted by Kn ...... ne if I V/I = ni, 
1 < i _< g. (A complete multipartite graph K1 ..... 1 (with t parts) is in fact a complete 
graph and is denoted Ke. ) 

THEOREM 4.2. Suppose G = (E E) is a complete multipanite graph. Then there is an ideal 
scheme realizing the access structure I' (G). 

Proof Let V1 . . . . .  Ve be the parts of  G. Let x 1 . . . . .  x? be distinct elements of GF(q), 
where q _> g. Let d = 2. For every participant v ~ V/, define ~b(v) = (xi, 1), and define 
4ffD) = (1, 0). It is straightforward to verify the condition (***). By Theorem 4.1, we have 
an ideal scheme. []  

To illustrate further application of these constructions, we will consider the possible access 
structures for up to four participants. Note that it suffices to consider only the access struc- 
tures in which the basis cannot be partitioned into two nonempty subsets on disjoint partici- 
pant sets. (For example, r 0 = {{P1, P2}, {P3, P4}} can be partitioned as {{P1, P2}} O 
{{P3, P4}}-) We list the nonisomorphic access structures of  this type on two, three and 
four participants in Table 1. The column labelled p* records the maximum possible infor- 
mation rates for each of these access structures, which we will discuss in the rest of  the paper. 

Of  these 18 (nonisomorphic) access structures, we can already construct ideal schemes 
for ten of  them. These ten access structures are either threshold access structures or have 
a basis which is a complete multipartite graph, so Theorem 4.2 can be applied. Eight ac- 
cess structures remain to be considered. We will use the vector space construction to con- 
struct ideal schemes for four of  these: #11, #14, #15 and #16. 
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Table L Access structures for at most four participants. 

w Subsets in I' o o* Comments 

1. 2 P1P2 1 (2, 2)-threshold 

2. 3 P1P2, P2P3 1 I" 0 --~ K1, 2 
3. 3 PIP2, P2P3, P1P3 1 (2, 3)-threshold 
4. 3 PIP2P3 1 (3, 3)-threshold 
5. 4 PIP2, PEP3, P3P4 2/3 Theorem 6.1 and Example 7.1 

6. 4 P1P2, PIP3, PIP,, 1 r 0 --- KI, 3 
7. 4 PIP2, P1P4, P2P3, P3P4 1 F 0 - /(2, 2 
8. 4 PIP2, P2P3, P2P4, P3P4 2/3 Theorem 6.1 and Example 7.2 
9. 4 P1P2, P1P3, PIP4, P2P3, P2P4 1 r 0 -- KI,I, 2 

10. 4 PIP2, PIP3, P1P4, P2P3, P2P4, P3P4 1 (2, 4)-threshold 
11. 4 PIP2P3, PIP4 1 Example 4.1 
12. 4 P1P3P4, PIP2, P2Ps 2/3 Theorem 6.1 and Theorem 8.1 
13. 4 P1P3P4, PIP2, P2P3, P2P4 2/3 Theorem 6.1 and Theorem 8.1 
14. 4 P1P2Ps, P1P2P4 1 Example 4.2 
15. 4 PIP2P4, PIPsP4, P2P3 1 Example 4.3 
16. 4 P1P2P3, P1P2P4, PIP3P4 1 Example 4.4 
17. 4 PIP2P3, PIP2P4, PIP3P4, P2P3P4 1 (3, 4)-threshold 
18. 4 PIP2P3P4 1 (4, 4)-threshold 

EXAMPLE 4.1 (Access structure #11). Take d = 3 and define ~ as follows: 

~ (D)  = (1, 0, 0) 

0b(P0 = (0, 1, 0) 

O(P2) = (1, O, 1) 

~(P3) = (0,  1, - 1) 

t~(P4) = (1, 1, 0). 

The conditions of  the vector space construction could be verified as follows. First, we have 
~(P4) - t~(P1) = t~(O) and t~(P2) + t~P3) - t~(PI) = t~(D), so  t~(D) E (~ (P1) ,  r 
~(P3)) and ~(D)  ~ (~(P1), ~(P4)) .  Now, it suffices to show that ~ (D)  r (~(Pi)  : Pi ~ B)  
if B is a maximal unauthorized subset. There are three such subsets B to be considered: 
{P1, P2} ,  {P1, P3} ,  and { e l ,  P3, P4} .  In each case,  we  need to establish that a system 
of linear equations has no solution. For example, suppose that ~ (D)  = a2O(P2) + a3~(P3) 
+ a4t~(P4), where a2, a3, a4 ~ GF(q). This is equivalent to the system 

a 2 + a 4 = 1 

a3 + a4 = O 

a 2 -- a 3 = 0. 
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The system is easily seen to have no solution. We leave the two other subsets B for the 
reader to consider. 

To implement the scheme, D chooses al = K, and a2, a3 at random. The shares he dis- 
tributes are as follows: 

P1 <-- d2 

P2 ~- a l  -4- a 3 

P3 ~ a2 - a3 

P 4 " -  a l  + a 2 .  

EXAMPLE 4.2 (Access structure #14). Take d = 3 and define ~b as follows: 

~b(D) = (1, 0, 0) 

q~(Pl) = (0, 1, 0) 

t~(P2) = (1, 0, 1) 

q~(P3) = (0, 1, 1) 

~b(P4) = (0, 1, 1). 

EXAMPLE 4.3 (Access structure #15). Take d = 3 and define q~ as follows: 

~b(D) = (1, 0, 0) 

~b(P1) = (0, 1, 0) 

~b(P2) = (1, l,  1) 

th(P3) = (1, - 1 ,  - 1) 

th(P4) = (0, 0, 1). 

EXAMPLE 4.4 (Access structure #16). Take d = 3 and define ~b as follows: 

~b(D) = (1, 0, 0) 

~b(P~) = (0, 1, O) 

q~(P2) = (0, 0, 1) 

~b(P3) = (1, 1, 1) 

~b(P4) = ( -  1, - 1, 1). 



AN EXPLICATION OF SECRET SHARING SCHEMES 375 

The property (***) is satisfied in each of  the above examples, and hence ideal schemes 
exist for these structures. 

Four access structures remain to be considered: #5, #8, #12 and #13. We shall see in 
Section 5 that, in each case, there does not exist an ideal scheme. 

5. Ideal Schemes and Matroids 

In this section, we discuss some results of Brickell and Davenport [8] and Martin [17], 
which show some interesting and surprising connections between ideal schemes and 
matroids. A matroid is a pair (X, g ) ,  where X is a finite set and .~ is a set of  subsets of 
X, such that the following properties are satisfied: 

1 . 0 E  27 
2. i f A  E f f a n d B  c_ A, t h e n B  E -~ 
3. if A, B E -~ and I A ] = ] B ] + 1, then there exists x E A~B such that B 13 {x} E .7. 

The members of  g a r e  called independent sets. Subsets of  X not in g a r e  called dependent 
sets; a minimal dependent set is called a circuit. It is well-known that matroids can equiva- 
lently be defined in terms of  their circuits, as follows. Let X be a finite set and let G be 
a set of  subsets of  X. Then G is the set of  circuits of  a matroid if and only if the following 
two properties are satisfied: 

1. I f A ,  B E G , A  ;~ B, t henA ~ B 
2. i f A ,  B E  G a n d x E  A 17 B, then there exists C E  G s u c h t h a t C  c_ A I.) B \ { x } .  

Let F be a field. A matroid ~ = (X, .7) is defined to be coordinatizable over F if there 
exists a mapping f : X --' F d, where F a is the d-dimensional vector space over F, such 
that a subset A c X is an independent set in ff//'if and only if {f(x) : x E A } is a linearly 
independent multiset of  vectors in F d. 

The results of  this section concern connected access structures and matroids, which we 
define now. An access structure F is connected if every participant is contained in a minimal 
authorized subset (i.e., a subset in the basis F0). A matroid ~ / ' i s  said to be connected 
if, for every pair x, y E X, there exists a circuit C such that x, y E C. 

Here is the first result linking matroids and ideal secret sharing schemes. 

THEOREM 5.1. [8] Suppose the connected matroid 2-K = (X, g )  is coordinatizable over a 
finite f ield F. Let x E X and let if9 = X \  {x}. Then there exists an ideal scheme for  the 
(connected) access structure having basis F 0 = {C\{x} : x E C E G}, where Gdenotes  
the set o f  circuits o f  

Proof. Let f :  X ~ F d b e  a coordinatization of  2-]E. Define D = {x}. Then we can apply 
the vector space construction (Theorem 4.1), by taking the function 4~ = f. We get an ideal 
scheme realizing the access s t r u c t u r e l ' .  [ ]  
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It is interesting to note that from one representable matroid, we can sometimes obtain 
ideal schemes for more than one access structure, by choosing different points x to repre- 
sent the dealer. For example, the set 

G = {{XI, X2, X3, X4} , {Xl, X2, X3, X5} , {X2, X3, X4, Xs} , {XI, X4, X5} } 

is the set of  circuits of  a matroid #'/~1. In fact, ~ is coordinatizable: 

f ( x l )  = (1, O, O) 

f (x2) = (0, 1, O) 

f(x3) = (0, 0, 1) 

f(x4) = (1, 1, 1) 

f(xs) = (1, - 1 ,  - 1 ) .  

I f  we take x = Xl, then we obtain the ideal scheme for (an isomorphic copy of) access 
structure #15 which we presented in Section 4.2;  if we take x = x2, we get the scheme 
for access structure #16. 

Brickell and Davenport have shown the more difficult result that this construction is revers- 
ible, i.e., the existence of  an ideal scheme for a connected access structure gives rise to 
the existence of  a connected matroid. 

Let .Tdenote the set o f  distribution rules for a scheme that realizes the connected access 
structure F. Denote X = fro LI {D }. Suppose A _ X and x E X'vl .  Then we write 
A =, x if the following property is satisfied: 

for every f,  g E .7 such that f ( y )  = g(y) for all y E A,  f ( x )  = g(x). 

For example, if A E F, then A = D. As another example, not involving D, observe that 
{Pl , / '3}  =* {P5} in Figure 1. 

Now, define a set of  subsets of  X as follows: 

~9 = {B ___ x :  3x ~ B, n \ { x }  = {x}} .  

We observe that A U {D } E ~D if A E I' .  Informally, a set is in ~D if a dependence exists 
among the valuesf(x),  x E A. The following result states that, if the scheme is ideal, then 
we have constructed a matroid. 

THEOREM 5.2. [8] Let .Tdenote the set o f  distribution rules for  an ideal scheme that realizes 
the connected access structure r.  Define X = ~ U {D } and 

~9 = {B c_ x :  ~ x ~ B, B \ { x }  = {x}}.  

Then ~9 comprises the dependent sets o f  a connected matroid ~ = ~::(.7). 



AN EXPLICATION OF SECRET SHARING SCHEMES 377 

We call the matroid ~'//'(`7) the associated matroid for the scheme `7. Note that if we 
start with a coordinatizable matroid ~g, and construct an ideal scheme .7 from it, as de- 
scribed in Theorem 5.1, then ffKis the associated matroid for .7. 

The associated matroid is defined in terms of  the set of  distribution rules .7. Hence, 
if we start with an access structure r ,  and we want to determine if there exists an ideal 
scheme realizing F, then Theorem 5.2 is not very useful. However, Martin [17] (see also 
[14]) has shown how the associated matroid can be computed as a function of  the access 
structure r only (i.e., ~'/f(.7) doesn't depend on the particular ideal scheme .7 realizing 
r ) .  Given an access structure r ,  it is possible to compute a pair (X, U) such that U is 
the set of  circuits of  a matroid whenever an ideal scheme realizing the access structure 
r exists. This often allows us to prove the nonexistence of  ideal schemes realizing certain 
access structures. 

Here is Martin's method of  computing U. 

1. Compute G D = {A LJ {D} : A  E I'0}. 
2. For all C, C' E GD, C ~ C', compute 

E(C, C') = C U C' \  I ('~ C' t . 
{C'~CD:C"c_CUC'} 

3. Let C consist o f  all the minimal sets E(C, C'). 
4. Define U = UD O C. 

The following theorem can be proved. 

THEOREM 5.3. [17] Let r be an access structure and construct (X, U) as described in the 
algorithm above. If  G is not the set of circuits of matroid, then there does not exist an 
ideal scheme realizing F. 

Briefly, what is happening is this. I f  there exists an ideal scheme realizing I ' ,  then U 
is the set of  circuits of  the associated matroid. GD comprises the circuits containing D. 
It is well-known that the circuits through any element (D, in this case) determine all the 
circuits of  a matroid. The computation of  the remaining circuits is done in steps 2-4  of 
the algorithm. For details and proofs, see [17]. 

So, once we have constructed U, we can check the circuit axioms to see if we do have 
a matroid. If  U is not a matroid, then we conclude that an ideal scheme for r does not 
exist. However, if  U is a matroid, then we cannot yet conclude that an ideal scheme exists. 
I f  the matroid is coordinatizable, then an ideal scheme exists; but if the matroid is not 
coordinatizable, then we cannot reach any conclusion. The only example of  this situation 
that has been studied is the Vamos matroid, which Seymour proves is not the associated 
matroid of  any ideal scheme [20]. 

Let's do a couple of examples to illustrate this technique. The first example is from Martin's 
Ph.D. thesis [17, Example 6.2.6]. Suppose we have access structure #5. In step 1, we obtain 

Up = {{D, P1, /)2}, {D, P2, P3}, {D, P3, P4}}- 
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Next, in step 2, we compute the following: 

E({D, P1, e2}, {D, P2, P3}) = {D, P1, e2} to {D, e2, P3}\{ D, P2} = {Pl, P3} 

E({D, P1, e2}, {D, P3, P4}) = {D, P1, P2} [') {D, P3, P4}\{ D} = {P1, P2, P3, P4} 

g({D, P2, P3}, {D, P3, P4}) = {D, P2, P3} tO {D, P3, P4}\{ D, P3} = {P2, P4}. 

Hence, we obtain 

C = {{D, PI, e2}, {D, P2, e3}, {D, P3, e4}, {P1, P3}, {e2, P4}}. 

However, G is not the set of circuits of a matroid, since there is no subset in G contained 
in the set 

{D, P1, e2} t.) {P2, P4}\{P2} = {D, P1, P4}- 

Hence, there does not exist an ideal scheme for this access structure. 
As another example, we look at access structure #16. In step 1, we have 

GD = {{D, gl,  e2, e3}, {D, P1, P2, P4}, {D, e l ,  P3, P4}}. 

In step 2, we obtain the circuit {P2, P3, P4}- The resulting set of circuits produces a 
matroid isomorphic to matroid ~ described above. 

By application of these techniques, the following result can be shown (see [17, Lcmma 
6.2.7]). 

THEOI~M 5.4. Suppose r is a connected access structure on four participants. Then there 
exists an ideal scheme realizing P if and only i fP is not isomorphic to one of  access struc- 
tures #5, #8, #12 or #13. 

6. The Entropy Bound on the Information Rate 

Denote by p* = p*(I') the maximum information rate for any perfect secret sharing scheme 
realizing a specified access structure I'. The first result we mention is an entropy bound 
that will lead to an upper bound on p* for certain access structures. The binary entropy 
of a probability distribution p on a finite set X is defined to be 

H(X) = - ~ p(x) logz p(x). 
{x~X:p(x) > o} 

We have already defined a probability distribution P_Tc on . .~  the entropy of this proba- 
bility distribution is denoted H(K). For any subset of participants B c_ fig, the set .7 of 
distribution rules of the scheme, together with the probability distribution on .~,  induce 
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a probability distribution on the list of shares given to the participants in B. We will denote 
this probability distribution by P6(B) and the entropy of this probability distribution by 
H(B). 
We state the following important theorem of Capocelli, De Santis, Gargano and Vaccaro 

[I l] without proof. 

THEOREM 6.1. [11] Suppose F is an access structure such that 

and 

{PI, P2}, {P2, P3}, {P1, P3, P4} E r 

{P~, P3}, {P2}, {P1, P4} ~ r. 

Let .~ be any perfect secret sharing scheme realizing F. Then H(P 2 P3) >- 3H(K). 

Now, suppose that F is an access structure that satisfies the hypotheses of Theorem 6.1. 
Suppose the I.TC] keys are equally probable; then H(K) = log2 I.TC]. By a basic property 
of entropy, we have that 

H(P2P3) _< log2 [ 6  2 • c$3[ = log 2 [c~2[ § log2 [c$3l. 

By Theorem 6.1, we have that 

log2 [ ~21 + log2 [ ~3 [ ~ 3 log 2 IJCl. 

Now, by the definition of information rate, we have p < log 2 [ ..7('[/log2 [ c$2 [ and p _< 
10g 2 ].7(l/10g2 [ ~3 l- It follows that 

3 log 2 - log2 1 21 § log2 ]~33[ 

_< log2 [--7([ + log2 ['~C] 
P P 

- 2 log2 1.7(I 
p 

Hence, p _ 2/3. This bound holds for any scheme realizing F, so it follows that p* _< 
2/3. Now, for the access structures #5, //8, #12 and #13, the hypotheses of Theorem 6.1 
are satisfied. Hence, p* ___ 2/3 for these four access structures. Note that this strengthens 
the nonexistence result of Theorem 5.4. We record this as follows. 

THEOREM 6.2. Suppose I' is connected access structure on four participants. I f I '  is isomor- 
phic to one of  access structures #5, #8, #12 or #13, then 0*02) <_ 2/3. 
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7. The Decomposition Construction 

Let us continue to study the access structures #5, #8, #12 and #13. Of  course, we can 
use the monotone circuit construction to produce perfect schemes. However, by this method, 
the best we can do is to obtain information rate o = 1/2 in each case. We can get p = 1/2 
in cases #5 and #12 by using a disjunctive normal form Boolean circuit. For case #8 and 
#13, a disjunctive normal form Boolean circuit will yield p = 1/3, but other monotone 
circuits exist which allow us to attain p = 1/2. However, we will show in this section that 
it is possible to construct schemes with p > 1/2 for each of  these four access structures. 

Our main construction is a recursive construction using ideal schemes as building blocks 
in the construction of larger schemes. We call this the decomposition construction. (A special 
case of  this construction has appeared in [6].) Suppose F is an access structure having 
basis F o. Let .TCbe a specified key set. An ideal decomposition of Fo consists of  a set 
{I" 1 . . . .  , F~ } such that the followign properties are satisfied: 

1. Fk c F 0 for 1 _ k _ n 
2. U~= 1 r k = F 0 
3. for 1 _ k _< n, there exists an ideal scheme with key set ~ on the subset of  partici- 

pants .9"0 k = Un~rkB, for the access structure having basis Fk. 

In most c a s e s ,  { r  1 . . . .  , I'n} will form a partition of I" 0, but this is not a requirement. 
Now, for 1 _< j _< f, suppose {I ' l l  . . . .  , Fin.} is an ideal decomposition o f f  0. For 

1 <_ j <_ e, 1 <_ k <_ nj, we have an ideal scheme with .7 j'k as its set of distribution rules. 
We will construct a scheme with key set .Td. The set of  distribution rules .Tis constructed 
according to the following recipe. Suppose D wants to share a secret (K 1 . . . . .  Kt). Then 
for 1 <_ j <_ e, 1 <_ k <_ nj, he chooses a random distribution rule f j'k E . ~ k  and distrib- 
utes the resulting shares to the participants in ~j,k- 

Let us compute the information rate of  the resulting scheme. This involves first deter- 
mining the total number of  shares given to each participant, and then dividing e by this 
quantity. For every participant Pi and for 1 _< j _< e, define 

ej ,  = I { k :  

so Rji denotes the number of shares given to Pi from the schemes .7 j'k, 1 _< k _ ny. Define 

t 

R, = Rj,, 
j = l  

i.e., the total number of  shares given to Pi. Then 

Pi = 
log 2 I ~7('[ e e 

log2 [--7([ Ri Ri 
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I f  we let 

R = m a x { R i :  1 <_ i < w},  

then the scheme realizing the access structure I" has information rate t /R.  
We summarize the above discussion in the following theorem. 

Theorem Z1. Let r be an access structure having basis F~ For 1 <_ j <_ e, suppose {rj~, 
. . . .  r j,nj } is an ideal decomposition o f  r o, where ~j,k denotes the partcipant set for  the 
access structure rj, k. Define 

R = max I { k :  E ~/,k}[ 1 < i -- Q 

j=l 

Then p*(r) >_ e/R. 

7.1. Examples 

Let's look at examples of this construction for our four problematic access structures. These 
examples will  also illustrate the advantage of  using e > 1 decomposit ions.  In the case of  
access structure #5, for example, i f  we take e = 1, then any ideal decomposit ion will have 
R >_ 2 and hence p _ 1/2. However, by taking e = 2, we can obtain p = 2/3, which 
is optimal,  as follows. 

EXAMPLE 7.1 (Access structure #5). Take g = 2, fir" = GF(q) for any pr ime power  q, 
and define the two ideal decomposit ions to be: 

r~,l = {{P~, P2}} 

r,,2 = {{e2, Ps}, {Ps, P4}} 

r2,1 = {{p~, P~}, {e~, t'3/} 

In2,2 = { {P3, P4} } 

Then R 1 = R 4 = 2 and R2 = R3 = 3. Hence R = 3 and p = 2/3. One implementation 
of  the scheme is as follows. D will choose four random elements (independently) from 
GF(q),  say hi1, bl2, b21, and bEE- Given a key (K1, K2) E GF(q) 2, D distributes shares 
as follows: 

P1 ~ (bl l ,  bE0; 

P2 ~ (bll + g l ,  b12, b21 + K2); 

P3 ~- (b12 + g l ,  b21, b22); 

P4 ~'- (b12, b22 + g2)- 
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EXAMPLE 7.2 (Access structure #8). Take e = 2, .7(  = GF(q) for any prime power q, 
and define the two ideal decompositions to be: 

F1,1 = {{el, P2}} 

I'1,2 = {{P2, Ps}, {P2, P4}, {Ps, P4}} 

F2,1 = {{el, P2}, {/2, Ps}, {P2, P4}} 

r2,2 : {{P3, P4}} 

This scheme has p = 2/3. An implementation is as follows. D will choose four random 
elements (independently) from GF(q) (q # 2J), say bll, b12, b21, and b22. Given a key 
(K1, K2) E GF(q) 2, D distributes shares as follows: 

PI ~ (bll + K1, b21 + K2); 

P2 *-" (bll, b12, b21); 

/~ <'- (b12 + K1, b21 + /(2, b22), 

P4 ~- (hi2 + 2K1, b21 + g2, b22 + K2)- 

EXAMPLE 7.3 (Access structure #12). Take e = 3 and define the three ideal decomposi- 
tions to be: 

I'l.1 = {{P1, e2}}  

F1,2 = {{P2, Ps}, {P1, /'3, e4}} 

I'2,1 = {{e2, e3}} 

r2,2 --~ {{Pl, P2}, {Pl, P3, P4}} 

r3,1 = {{P1, P2}, {P2, P3}} 

Fs,2 = {{P1, P3, P4}}- 

The resulting scheme has p = 3/5. 

EXAMPLE 7.4 (Access structure #13). Take e = 4 and define the four ideal decompositions 
to be: 

rl,1 = {{Pl,  P2}} 

rl,2 = {{P2, Ps}, {P2, P4}, {Pl, t'3, P4}} 

r2,1 = {{P2, Is}}  

r2,2 : {{Pl , /~  {/02, P4}, {Pl, P3,/04}} 
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r3,1 = { {P2, P4} } 

F3,2 = {{PI, P2}, {P2, P3}, {P1, P3, P4}} 

r4,1 = {P1, P2}, {P2, P3}, {P2, P4}} 

F4,2 = {{Pl, P3, P4}}. 

The resulting scheme has p = 4/7. 

The schemes presented in Examples 7.1 and 7.2 have optimal information rates, by The- 
orem 6.2. The schemes presented in Examples 7.3 and 7.4 have the best possible information 
rate that can be obtained by application of  the ideal decomposition construction. This can 
be seen by solving a suitable linear programming problem using techniques described in 
[6]. However, we shall see in the next section how to construct (optimal) schemes with 
information rate 2/3 for these two access structures. 

8. The Simmons Geometric Construction 

In this section, we describe the Simmons geometric construction [23], [26], [25], which 
can be thought of as a far-reaching generalization of the Blakley threshold scheme [5]. Our 
description is not the most  general one possible, but it is sufficient for our purposes. 

Let q be a pr ime power and consider the n-dimensional vector space over GF(q). A 
f la t  is defined to be a subspace or a translation (i.e., coset) of  a subspace. The collection 
of all fiats constitutes the n-dimensional affine geometry AG(n, q). A flat is called a point 
if  its dimension is 0, a line if its dimension is 1; aplane if its dimension is 2; and a hyperp/ane 
if its dimension is n - 1. I f  X = {Xl . . . .  , X,n} is a set of points in AG(n, q), then we 
define Span(X) to be the smallest fiat containing all the points in X. It is easy to see that 

Span(X) = ( ~-]jctixi:~ . . . .  '~ E GF(q)' ~-lJ~ = 1) 

Suppose VD is a fixed line in AG(n, q). We will construct a secret sharing scheme with 
y c - -  VD, so l YCl -- q. Let V t be a hyperplane such that 1 II1 n v o [ = 1; the key win 
be the unique point K = VI O I'D. Every participant Pi will be given a share consisting 
of a set d(Pi) of R i points in Vt. The sets Pi are chosen in such a way that, for every 
B c I ' ,  we have 

Span I {i:Pi~BU } d(Pi)IAVD = 0 ~* B t[ r .  (3) 

When a subset of  participants, B, wishes to compute the secret, they will compute the 
span of the shares they collectively hold, and intersect it with Vo. I f  the intersection is 
nonempty, then the (unique) point of  intersection is the key K. 
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A participant Pi will receive R i points of n-dimensional space for his or  her share. Since 
there are only q possible keys, the information rate will be very low (1/n in the (best) case 
where Ri = 1). However, a careful implementation will allow us to increase the informa- 
tion rate considerably; this implementation is based on the description given by Martin 
[17, pp. 88-96]. Suppose we can fred one hyperplane V t and one collection of  sets of  points 
d(Pi) ,  1 <_ i <_ w, such that the condition (3) is satisfied, where the key is K 0. This will 
be called a Simmons geometric  configuraiton. 

Now, for 1 -< i __ w, denote 

d(Pi)  = {xij : 1 <- j <- Ri} .  

Let  Lij be the (unique) line parallel to VD that contains xij , for 1 <_ i <_ w, 1 <_ j <_ Ri. 
For every hyperplane H such that ]II  n vDI = 1, define a distribution function fn  by 
the rule 

fn(O) = n n v .  

fn(Pi) = {L0 n n : 1 <- j <- Ri} ,  1 <_ i <  w. 

The scheme will have q" distribution rules and [ C.~il -~- q Ri, 1 <_ i <_ w. Hence, the infor- 
mation rate is P = min{1/Ri : 1 <_ i <_ w}.  

Now, let's further refine the implementation so that it is not necessary to communicate 
points in n-dimensional space as the shares. Observe that the shares and the secret all lie 
on publicly known lines. Suppose that all the xo's and Ko are made public, as is the direc- 
tion vector e of  the lines Lij and V D. Then we can fix the following parametric description 
of  these lines: 

Vo = {Ko + 3`e : 3  ̀ E GF(q)}  

Lij = {xij + 3`ije : 3 /̀y E GF(q ) } ,  1 <- i <_ w, 1 < j <- R i. 

A hyperplane H consists of the solutions to an equation A �9 x = B. We are interested only 
in hyperplanes that meet VD in a point; this happens if and only if A .  e # 0. Hence, mul- 
tiplying A and B by a scalar if necessary, we can assume without loss of generality that 
A ' e = l .  

Now, straightforward linear algebra shows that K = K 0 + )~e, where 

3, = B - A "  K o, 

and Lij I"1 H = xij + 3`ije, where 

3,0 = B - A . x i j ,  

for all i, j .  
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There exists a 1 - 1 correspondence between field elements k and points on VD; and 
l ikewise there is a 1 - 1 correspondence between the values kij and points on Lij (for all 
i, j ) .  Hence, we can take the hij's to be the shares and the value k to be the secret. In 
this way we use only scalars (rather than n-dimensional vectors) as shares and the secret. 
Then our modif ied distribution rules are: 

fn (D)  = B -  A . K o 

fli(Pi) = {B - A " xq : 1 <_ j <_ Ri},  1 <_ i <_ w. 

An authorized subset B can compute the key h as a function of  the shares ~,ij as follows. 
Since 

K o E S p a n  ~_~ O x , 
{i:PiEB } j=l 

we can express Ko as 

Ri 

Uo = E ~ d  OlijXij' 
{i:eiEB } j = l  

where 

R i 

X 0--1 
{i:PiES } j r 1  

Then it is easy to see that 

Ri 
x = X X 

{i:eiEB } j = l  

&l. Examples 

We give two examples o f  Simmons geometric configurations due to Mart in [17, p. 227] 
concerning the access structures #12 and #13. 

EXAMPLE 8.1 (Access structure #12). Take n = 3 and let I"i be a plane meeting Vo in a 
point, K o. Choose four points Yl, Y2, Y3, Y4 E lit such that no three of  the five points Yl, 

Y2, )3, Y4, Ko are coUinear. Define xN = Yl, x21 = Y2, X22 = Y4, X31 = Y3 and x41 = Y4. 
(Hence, R1 = R3 = R4 = 1 and R2 = 2.) The resulting scheme has information rate 1/2. 
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Here is a possible implementation.  Suppose K 0 = (0, 0, 0), e = (0, 0, 1), and I/i is the 
plane z = 0. Suitable points are Yl = ( -1 ,  0, 0), Y2 = (0, 1, 0), Y3 = (1, -1 ,  0) and 
Y4 = (1, 1, 0) (provided q is not a power of  two). A plane H that meets V D in a point has 
the equation ax  + by + z = K, where K is the secret and a,  b are random. 

The shares that the four participants receive are the following: 

P1 ~ (K + a);  

P2 ~ ( K -  b , K -  a - b); 

P3 ~ ( K -  a + b); 

P4 *- ( K -  a - b). 

EXAMPLE 8.2 (Access structure #13). Take n = 3 and let VI be a plane meeting VD in a 

point, K o. Choose five points Yl, Y2, Y3, Y4, Y5 E Vt such that no three of the  six points 
Yl, Y2, Y3, Y4, )'5, Ko are collinear. Define Xll = Yl, x21 = Y2, x22 = YS, X31 ---~ Y3 and 
Xgl = Y4. (Hence, R 1 = R 3 = g 4 = 1 and RE = 2.) The resulting scheme will  have infor- 
mation rate 1/2. 

R2. Combining Geometric and Nongeometric Schemes 

Theorem 7.1 combined e ideal decomposit ions to produce a secret sharing scheme. How- 
ever, there is no reason why we need to restrict ourselves to schemes arising from ideal 
decompositions.  In particular, we can use a Simmons geometric scheme in place of  an 
ideal decomposition. The computation of the information rate will remain unchanged since 
the R's in a Simmons scheme have the same function as the R's in an ideal decomposit ion 
(i.e., they count the number  of  elements of GF(q) given to each participant).  

With this observation, it is a simple matter to obtain schemes with information rate 2/3 
for access structures #12 and #13. For  access structure #12, take g = 2 and use the third 
ideal decomposit ion of  Example 7.3 together with the Simmons scheme from Example 8.1. 
For access structure #13, take e = 2 and use the fourth ideal decomposit ion of  Example 
7.4 together with the Simmons scheme from Example 8.2. We have the following: 

THEOREM 8.1. I f  I" is isomorphic to access structure #12 or #13, then p*(I') = 2/3. 

9. Access Structures Based on Graphs 

In this section, we survey bounds on 0*(I ' (G)),  where G is a graph. Our  first result is 
an upper bound on p*(I'(G)) whenever G is not a complete multipartite graph. 

THEOREM 9.1. [6] Suppose G is a connected graph that is not a complete multipartite graph. 
Then p*(F(G)) <_ 2/3. 
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The proof of  this theorem involves showing that any connected graph which is not a 
muhipartite graph contains an induced subgraph on four vertices that is isomorphic to the 
basis of  access structure #5 or #8. 

Since p* = 1 for complete multipartite graphs, Theorem 9.1 tells us that it is never the 
case that 2/3 < p* < 1 for any access structure that is the closure of  the edge set of  a 
connected graph. 

For paths, and for cycles of  even length, p* can be determined exactly. 

THEOREM 9.2 [6]. 

1. I f  P n is the path with n edges (n > 3), then p*(F(Pn) ) = 2/3. 
2. I f  Cn is the cycle o f  length n, where n is even, (n > 6), then p*(F(Cn)) = 2/3. 
3. I f  Cn is the cycle of  length n, where n is odd, (n >>_ 5)), then 

2n 2 
- -  < p * ( r ( c . ) )  < -~ 
3 n + l  -- -- " 

The lower bounds of Theorem 9.2 are proved using the ideal decomposition construction 
(Theorem 7.1), by partitioning the edge sets of the relevant graphs into K2's and K1,2's. In 
parts 1 and 2, we take e = 2; in part 3, we set g = n. With these clues, the reader can 
probably construct the decompositions, but the details can be found in [6]. 

There are some general lower bounds on p* that can be proved using the decomposition 
construction with g = 1. Here are two such results. 

THEOREM 9.3. [9] Let G be a graph having maximum degree d. Then 

p*(F(G)) _> 
d 

This is proved by decomposing G into comlete bipartite graphs K1, m (such a decomposi- 
tion is called a star decomposition, since Kl,m is often called a star). In the case where 
G is regular and has girth at least 5, this result is the best that can be obtained using star 
decompositions [9, Theorem 3.9]. 

To illustrate the proof technique, we prove Theorem 9.3 in the special case when G is 
regular of  degree d, and d is even. Construct a (directed) eulerian tour of  G, and for each 
vertex v, define G v to consist of  the d/2 edges directed into v. Then the subgraphs Gv, 
v E V(G), comprise an ideal decomposition for which R = 1 + d/2. The result follows 
from Theorem 7.1. 

The lower bound of Theorem 9.3 can be improved whenever G is acyclic, as stated in 
the following theorem. The proof involves finding a suitable star decomposition by means 
of  a simple recursive algorithm. 

THEOREM 9.4. [6] For any tree T,, p*(F(T)) >_ 1/2. 
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Next, we discuss some very general bounds, proved in [27], that depend only on the 
number of  vertices in the graph. These bounds use balanced incomplete block designs 
(BIBDs). A (v, k, 1)-BIBD is a pair (V, .~), where I vl = v and .~  is a set of  k-subsets 
of  V (called blocks), such that every pair of elements of  V occurs in exactly one block. 
By elementary counting, it follows that every element of  V occurs in exactly r = (v - 1)/ 
(k - 1) blocks. For information on the existence of BIBDs, we refer to [3]. 

We will use the following notation: a PS(G, 0, q) denotes a perfect secret sharing scheme 
for the access structure r ( G ) ,  for a set of  q keys, with information rate 0. 

Now, suppose G = (V, E)  has v vertices and suppose (V, .~) is a (v, k, 1)-BIBD. Fix 
an integer q. For every block A, suppose there is a PS(G[A], 0.4, q) where G[A] denotes 
the induced subgraph of  G on the vertices in A. Then, for every v E V, let 

1 

O v -  1 " 
~{AE~:vEA} O--X 

It follows from [9, Theorem 3.5] that 

O*(F(G)) >- min{Ov : v E V}. (4) 

The bound (4) is a straightforward generalization of the ideal decomposition construction 
(with t = 1) to the more general situation where we use subschemes that are not necessarily 
ideal. I f  every 0.t = 1, then we have an ideal decomposition, and the information rate is 
the same as that obtained from Theorem 7.1. 

We will compute bounds on the information rate by using BIBDs of  various block sizes. 
We first define p(k) = min{o*(I '(G)) : I V(G) I -- k}. We will use the following bounds: 

p(3) = 1 

2 
p(4) = 

4 
0(5) - 7" 

The values of  0(3) and 0(4) follow from Table 1. Information rates for the 21 connected 
graphs on five vertices were studied in [6], where the bound 0(5) -> 4/7 is proved. All 
of  these bounds come from application of  the ideal decomposition construction. In the 
case of  an access structure r ( G ) ,  where G is a graph, an ideal decomposition consists 
of a decomposition into complete multipartite graphs. The number of  decompositions used 
is at most five [6]. Since the least common multiple of  2, 3, 4 and 5 is 60, it follows from 
Theorem 4.2 that for any graph G with k = I V(G) I, where 3 _< k _< 5, there exists a 
PS(G, p, q6O) with p > p(k) for all prime powers q _> k + 1. 

Now, from Equation (4), we get 

p*( r (o ) )  < p(k) _ ( k -  1)p(k) 
- r v - 1  
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whenever a (v, k, 1)-BIBD exists. We obtain the following bounds, depending on the value 
of  k: 

2 
k = 3 p*( r (G))  _> - -  

v -  1 

2 
k = 4 p*(F(G)) > - -  

- v - 1  

16 
k = 5 p*( r (G))  _ 7(v - 1) 

It is interesting to observe how the bounds improve as we use BIBDs with larger block 
size. Also, note that if there does not exist a (v, k, 1)-BIBD, then we take the smallest in- 
teger v0 > v such that there does exist a (v0, k, 1)-BIBD, and we obtain the bound 

p*(I'(G)) <_ 
(k - 1)p(k) 

V o - 1  

This is accomplished by deleting v 0 - v points from the BIBD, thereby constructing a pair- 
wise balanced design [3] on v points, and then proceeding in a similar way. 

A a final example, we pose a puzzle for the reader. Let G be the Petersen graph. The 
first part of the puzzle is to prove that p*(I'(G)) >_ 10/21. This can be done using the ideal 
decomposition construction. The second part of  the puzzle is to prove that 10/21 is the 
best lower bound that can be obtained by application of  Theorem 7.1. 

10. Conclusion 

Although this is a lengthy paper, we have really treated only one aspect of  secret sharing 
schemes here, namely the construction of  schemes with information rate as high as possi- 
ble. There has also been considerable study of schemes with extended capabilities. The 
idea of protecting against cheating by one or more participants is addressed in [18], [28], 
[1], [19], [22] and [10]. Prepositioned schemes are studied in [24]. The question of how 
to set up a secret sharing scheme in the absence of a trusted party is solved in [12]. Finally, 
schemes that permit disenrollment o f  participants are discussed in [4]. 
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